Mechanical Behavior and Constitutive Modeling of Metal Cores
نویسندگان
چکیده
Studying the mechanical behavior of metal cores provides insight into the overall performance of structures comprising metal sandwich plates, and can help immensely in designing metal sandwich plates for specific engineering applications. In this study, the response of folded (corrugated) plate and pyramidal truss cores are explored under both quasistatic and dynamic loadings. In particular, two important characteristics of metal cores, the nonuniform hardening/softening evolution due to stressing in different directions and the rate-dependence, are discussed for different core topologies, including the square honeycomb core. In addition, the role of core behavior on the overall performance of sandwich plates is studied by employing a constitutive model for the elastic-plastic behavior of plastically compressible orthotropic materials [Xue et al. 2005]. The constitutive model is capable of capturing both the anisotropy of the core, associated with stressing in different directions, and its rate-dependence. The approach, based on employing the core constitutive model, not only significantly reduces the computation time, but also permits exploration of the role of each fundamental rate-dependent response of the metal core on the overall response of the metal sandwich plates.
منابع مشابه
Finite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کاملModeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملMechanical Behavior of a FGM Capacitive Micro-Beam Subjected to a Heat Source
This paper presents mechanical behavior of a functionally graded (FG) cantilever micro-beam subjected to a nonlinear electrostatic pressure and thermal moment considering effects of material length scale parameters. Material properties through the beam thickness direction are graded. The top surface of the micro-beam is made of pure metal and the bottom surface from a mixture of metal and ceram...
متن کاملThermo-mechanical behavior of shape memory alloy made stent- graft by multi-plane model
Constitutive law for shape-memory alloys subjected to multi-axial loading, which is based on a semi-micromechanical integrated multi-plane model capable of internal mechanism observations, is generally not available in the literature. The presented numerical results show significant variations in the mechanical response along the multi loading axes. These are attributed to changes in the marten...
متن کاملGenetic Algorithm-based Optimization Procedures to Find the Constants of Johnson-Cook Constitutive Equation
Johnson-Cook constitutive equation is one of the most famous constitutive equations that have ever been developed to model the hot deformation flow curves of different materials. This equation is a predefined model in the traditional finite element codes to describe the material behavior in applications such as simulating the manufacturing processes. In this work, two different genetic algorith...
متن کامل